New CDC standardization projects on PTH and thyroid function tests

Candice Z. Ulmer, Ph.D. Project Lead, Clinical Standardization Programs Division of Laboratory Sciences

National Center for Environmental Health Agency for Toxic Substances and Disease Registry

Overview

- Current Challenges in PTH Testing
- Developments to the CDC PTH Reference Method
- CDC's New Thyroid Reference Methods
- Future Directions

Studies suggest that current inaccuracy among PTH assays can lead to inconsistent diagnosis

Blood contains intact PTH and a range of different PTH fragments/modifications that can affect measurement accuracy

PTH variants, found in circulation, can be reactive to the PTH receptor and henceforth be of biological relevance

Some ratio of PTH fragments to PTH(1-84) may have potential for use in the diagnosis of:

- Hyperparathyroid-Associated Bone Loss
- Non-Dynamic Bone Disease
- Severe or End-stage Renal Disease

PTH Fragment Type	Amino Ac	id Range
Intact	1-8	84
N-terminal	1-3 1-4	34 44
Mid-range	7-34 34-77 35-64	37-77 38-77 44-68
C-terminal	4-84 7-84 28-84 34-84 35-84	37-84 38-84 45-84 48-84 53-84

Phosphorylation and oxidation can occur at serine and methionine

Adapted from Shrader, S. P. et al. Annals of Pharmacotherapy 2005, 39, 1511-1516.

The candidate reference measurement procedure needs to meet specific criteria that are specific to PTH testing

Desira	able Specific	ation	
Specimen	Imprecision	Inaccuracy	
Serum	6-7%	4-5%	Ankrah-Tetteh T, et al. Ann Clin Biochem 2008;45:167-169
Plasma	6-7%	6-7%	Viljoen A, et al. Clin Chem Lab Med 2008;46:1438-42.
equirements are based	on hiological variability fr	om the references liste	4

5

Low endogenous concentrations of PTH in serum require highly sensitive and specific methodologies

An immunocapture strategy is being evaluated as part of the sample preparation workflow for the PTH Reference Method

Initial assessments demonstrate excellent linearity, reproducibility, and sufficient sensitivity of the UHPLC-HRMS system

Normal Biological Levels of PTH

	Concentration	
iPTH	10 – 65 pg/mL	
N-terminal	8 – 24 pg/mL	
C-terminal	50 – 330 pg/mL	

Pagana, K. D. P., T. J.; Pagana, T. N. (2015). Parathyroid Hormone. In Mosby's Diagnostic and Laboratory Test Reference (12 ed., pp. 689). St. Louis, Mo.: Mosby.

Target Levels of Intact PTH in KDOQI Guidelines for CKD-MBD

CKD Stage	Concentration
Stage 3	35 – 70 pg/mL
Stage 4	70 – 110 pg/mL
Stage 5	150 – 300 pg/mL

KDOQI Guidelines. NKF Am J Kidney Dis 2003, 42 (suppl 3), S1-201.

Immunoaffinity purification procedures allows for analysis of intact PTH and PTH-derived peptides in the same analytical run

Inaccurate free T4 measurements may lead to incorrect diagnosis of patients

Adapted from De Grande, L. et al. Clinical Chemistry 2017, 63:10, 1642-1652.

CDC is establishing a new reference methods for free and total T4 using equilibrium dialysis combined with UHPLC-MS/MS

University of Ghent

[Clin. Chem. Lab. Med., 49, 1275–1281 (2011)]

CDC's new reference methods meet or exceed performance requirements for reference methods

- Highly specific by use of isotope-dilution LC-MS/MS
- Traceable to SI: IRMM-468- certified, pure-compound reference materials as calibrators

Parameter	Total T4	Free T4
Accuracy	-0.5 %	-0.2%
Precision	0.8 % (inter-day) 0.9 % (intra-day)	1.1% (inter-day) 2.7% (intra-day)
Analytical Measurement Range	1-20 mg/dL	0.3-8.0 ng/dL

CDC's new reference method for FT4 is in good agreement with other reference labs

• Blinded euthyroid samples (20) measured by 4 reference labs show good correlation

The CDC mean bias to the overall laboratory mean is within <u>+</u>2.5% bias, and the bias is consistent across the 14–24 pmol/L concentration range

Next Steps

PTH

- Assess alternative sample preparation approaches to improve method sensitivity
- Measure additional PTH-related variants

Free T4

- Complete 2nd comparison with reference network using hypo/hyper/euthyroid samples
- Create reference materials for a thyroid hormone certification program to be launched in 2019

TSH

Develop a harmonization program

Acknowledgements

CDC Staff

- Enada Archibold, Ph.D.
- Uliana Danilenko, Ph.D.
- Hubert Vesper, Ph.D.
- Julianne Botelho, Ph.D.
- Sarah Warren
- Kelsey Wiley
- Otoe Sugahara
- Ashley Ribera
- Krista Poynter

CDC Division of Laboratory Sciences

International Federation of Clinical Chemistry (IFCC)

- Scientific Division Working Group for PTH
- Committee for Bone Metabolism
- Committee for the Standardization of Thyroid Function Tests

National Institute for Biological Standards & Control (NIBSC)

- Chris Burns
- Ben Cowper

Thermo Fisher Scientific

MSIA Development Team

THANK YOU

For further information, contact:

Candice Z. Ulmer, Ph.D.

CUlmer@cdc.gov

Uliana Danilenko, Ph.D. UDanilenko@cdc.gov Hubert W. Vesper, Ph.D. HVesper@cdc.gov

Director CDC Clinical Standardization Programs

Or visit https://www.cdc.gov/nceh/dls/ccb.html

For more information, contact NCEH/ATSDR 1-800-CDC-INFO (232-4636) | TTY: 1-888-232-6348 www.atsdr.cdc.gov | www.cdc.gov Follow us on Twitter @CDCEnvironment

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention and the Agency for Toxic Substances and Disease Registry.

Use of trade names and commercial sources is for identification only and does not constitute endorsement by the U.S. Department of Health and Human Services or the U.S. Centers for Disease Control and Prevention.

